1,781 research outputs found

    Anisotropic diffusion processes in early vision

    Get PDF
    Summary form only given. Images often contain information at a number of different scales of resolution, so that the definition and generation of a good scale space is a key step in early vision. A scale space in which object boundaries are respected and smoothing only takes place within these boundaries has been defined that avoids the inaccuracies introduced by the usual method of low-pass-filtering the image with Gaussian kernels. The new scale space is generated by solving a nonlinear diffusion differential equation forward in time (the scale parameter). The original image is used as the initial condition, and the conduction coefficient c(x, y, t) varies in space and scale as a function of the gradient of the variable of interest (e.g. the image brightness). The algorithms are based on comparing the local values of different diffusion processes running in parallel on the same image

    A novel system architecture for real-time low-level vision

    Get PDF
    A novel system architecture that exploits the spatial locality in memory access that is found in most low-level vision algorithms is presented. A real-time feature selection system is used to exemplify the underlying ideas, and an implementation based on commercially available Field Programmable Gate Arrays (FPGA’s) and synchronous SRAM memory devices is proposed. The peak memory access rate of a system based on this architecture is estimated at 2.88 G-Bytes/s, which represents a four to five times improvement with respect to existing reconfigurable computers

    Computing centroids in current-mode technique

    Get PDF
    A novel current-mode circuit for calculating the centre of mass of a discrete distribution of currents is described. It is simple and compact, an ideal building block for VLSI analogue IC design. The design principles are presented as well as the simulated behaviour of a one-dimensional implementation

    Recursive Motion and Structure Estimation with Complete Error Characterization

    Get PDF
    We present an algorithm that perfom recursive estimation of ego-motion andambient structure from a stream of monocular Perspective images of a number of feature points. The algorithm is based on an Extended Kalman Filter (EKF) that integrates over time the instantaneous motion and structure measurements computed by a 2-perspective-views step. Key features of our filter are (I) global observability of the model, (2) complete on-line characterization of the uncertainty of the measurements provided by the two-views step. The filter is thus guaranteed to be well-behaved regardless of the particular motion undergone by the observel: Regions of motion space that do not allow recovery of structure (e.g. pure rotation) may be crossed while maintaining good estimates of structure and motion; whenever reliable measurements are available they are exploited. The algorithm works well for arbitrary motions with minimal smoothness assumptions and no ad hoc tuning. Simulations are presented that illustrate these characteristics

    Finding Faces in Cluttered Scenes using Random Labeled Graph Matching

    Get PDF
    An algorithm for locating quasi-frontal views of human faces in cluttered scenes is presented. The algorithm works by coupling a set of local feature detectors with a statistical model of the mutual distances between facial features it is invariant with respect to translation, rotation (in the plane), and scale and can handle partial occlusions of the face. On a challenging database with complicated and varied backgrounds, the algorithm achieved a correct localization rate of 95% in images where the face appeared quasi-frontally

    Automating the Hunt for Volcanoes on Venus

    Get PDF
    Our long-term goal is to develop a trainable tool for locating patterns of interest in large image databases. Toward this goal we have developed a prototype system, based on classical filtering and statistical pattern recognition techniques, for automatically locating volcanoes in the Magellan SAR database of Venus. Training for the specific volcano-detection task is obtained by synthesizing feature templates (via normalization and principal components analysis) from a small number of examples provided by experts. Candidate regions identified by a focus of attention (FOA) algorithm are classified based on correlations with the feature templates. Preliminary tests show performance comparable to trained human observers

    Traditional Cultural Districts: An Opportunity for Alaska Tribes to Protect Subsistence Rights and Traditional Lands

    Get PDF
    Alaska tribes have limited control over their traditional lands and waters. Tribes may increase their influence through a Traditional Cultural District designation under Section 106 of the National Historic Preservation Act. This designation does not stop development, but requires federal agencies to consult with tribes regarding potential development that may impact the district. The consultation right applies regardless of whether a tribe owns or has formally designated the district. In Alaska, where no Traditional Cultural Districts exist as of 2014, there is potential for designating large areas of land or water that correspond to the range of traditionally important species

    Least-squares multirate FIR filters

    Get PDF
    The authors propose a new least-squares design procedure for multirate FIR filters with any desired shape of the (band-limited) frequency response. The aliasing, inherent in such systems, is implicitly taken into account in the approximation criterion

    A Number Sense as an Emergent Property of the Manipulating Brain

    Get PDF
    The ability to understand and manipulate numbers and quantities emerges during childhood, but the mechanism through which this ability is developed is still poorly understood. In particular, it is not known whether acquiring such a number sense is possible without supervision from a teacher. To explore this question, we propose a model in which spontaneous and undirected manipulation of small objects trains perception to predict the resulting scene changes. We find that, from this task, an image representation emerges that exhibits regularities that foreshadow numbers and quantity. These include distinct categories for zero and the first few natural numbers, a notion of order, and a signal that correlates with numerical quantity. As a result, our model acquires the ability to estimate the number of objects in the scene, as well as subitization, i.e. the ability to recognize at a glance the exact number of objects in small scenes. We conclude that important aspects of a facility with numbers and quantities may be learned without explicit teacher supervision
    • …
    corecore